P. V. Tarasenko, É. A. Ponomareva, and

UDC 547.833:543.422

G. F. Dvorko

Verdazyl [2,4-diphenyl-6-aryl-3,4-dihydro-sym-tetrazin-1(2H)-yl] radicals I and verdazylium salts II are readily interconvertible; in studies of the reactions of these compounds they
are often simultaneously present in solution [1]. We have found that I and II in relatively
concentrated solutions react with one another to give 1,5-diphenyl-3-aryl-6-(2,4-diphenyl-6aryl-1,2,3,4-tetrahydro-sym-tetrazin-1-yl)-5,6-dihydro-sym-tetrazinium salts III and leucoverdazyls:

III a $\operatorname{Ar}^1 = \operatorname{Ar}^2 = \operatorname{C}_6 \operatorname{H}_5$; b $\operatorname{Ar}^1 = \operatorname{C}_6 \operatorname{H}_5$, $\operatorname{Ar}^2 = \operatorname{C}_6 \operatorname{H}_4 \operatorname{OCH}_3 - p$; c $\operatorname{Ar}^1 = \operatorname{C}_6 \operatorname{H}_4 \operatorname{OCH}_3 - p$, $\operatorname{Ar}^2 = \operatorname{C}_6 \operatorname{H}_5$;

Salt II evidently acts as a CH acid in this reaction.

A solution of verdazyl radical I (\sim 0.2 mole) and salt II (\sim 0.1 mole) in dry acetonitrile was refluxed for \sim 20 min, after which the mixture was diluted with absolute ether, and salt III precipitated in the form of fine brown crystals in \sim 85% yield. Salt IIIa (X = Br) had mp 220-222°C (dec.). IR spectrum (KBr): 1600 (C=N) and 2900 cm⁻¹ (CH₂). Electronic spectrum (CH₃CN): λ_{max} 490 nm (log ϵ 4.37). PMR spectrum (CF₃COOH): 6.6-8.0 (m, 30 aromatic H + 6-H) and 5.2 ppm (s, 2H, CH₂).

Leucoverdazyls IV were isolated in $\sim 90\%$ yields in the form of hydrochlorides [2] by the addition of concentrated hydrochloric acid to ether solutions.

Salts III were stable in the solid state. In aqueous acetonitrile they are rapidly hydrolyzed and oxidized, and bright-blue salts precipitate. A salt with the composition $C_{40}H_{33}BrN_8O$ was obtained from IIIa (X = Br). Electronic spectrum (CH₃CN): λ_{max} 655 nm (log ϵ 4.11). Treatment of a solution of this salt (or IIIa) in CH₃CN with aqueous alkali gave velvet-green crystals of the $C_{40}H_{32}N_8O$ base. Electronic spectrum (CH₃CN), λ_{max} (log ϵ): 585 (4.08), 845 (4.14), and 925 nm (4.12). Molecular weight (M) (by the Rast method) 645; the calculated value was 640.5.

Verdazyl radicals and verdazylium salts undergo virtually no reaction with one another in solutions at low concentrations ($\sim 10^{-4}$ mole/liter).

LITERATURE CITED

- 1. O. M. Polumbrik, Usp. Khim., 47, 1414 (1978).
- 2. É. A. Ponomareva, T. L. Pervishko, N. I. Kulik, and V. Kh. Premyslov, Vestnik Kiev. Politekhn. Inst., Ser. Khim. Mashinostr. Tekhnol., No. 14, 24 (1978).

Kiev Polytechnic Institute, Kiev 252056. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 270-271, February, 1983. Original article submitted May 20, 1982.